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文档概述

文档适用范围

本文档主要介绍北京万里开源软件有限公司（以下简称“万里开源”）数据库

软件（英文“GreatDB”，以下简称“GreatDB”）基于 GreatDB 驱动接口进行应用程

序开发，和开发规范的说明。本文档适合初次接触本产品的用户，用于指导用户应

用连接 GreatDB 数据库的配置方法、示例以及开发规范的说明性文档。

一、JDBC 开发规范

基于 GreatDB JDBC 驱动接口进行 Java 应用程序开发，相比 MySQL 生态的开源 JDBC 驱

动无明显差异，主要差异点是在引用连接串 URL 时需要使用 greatdb 字样。以下是两个 JDBC

连接串的示例：

//非加密连接

jdbc:greatdb://localhost:3306/mysql?useSSL=false

//国密加密连接

jdbc:greatdb://localhost:3306/mysql?useSSL=true&clientCertificateKeyStoreTy

pe=GMTLS

jar 包：（请联系万里数据库获取。）

万里数据库推荐如下开发规范指导涉及 JDBC 接口的 Java 应用程序开发工作。

1.1.驱动与连接管理

驱动加载与版本适配:

选择与数据库版本兼容的驱动版本。

避免硬编码驱动类名（如 Class.forName("com.greatdb.cj.jdbc.Driver")），现代驱

动（JDBC 4.0+）支持 SPI 自动加载，可省略显式加载步骤。

连接池使用规范:

禁止直接创建 DriverManager 连接，必须使用连接池（如 HikariCP、Druid、C3P0）管

理连接，避免频繁创建 / 关闭连接导致的性能损耗。

连接池配置需合理设置参数：

核心池大小（corePoolSize）、最大池大小（maximumPoolSize）根据并发量调整；

连接超时（connectionTimeout）、空闲超时（idleTimeout）避免资源长期占用；

配置连接验证（如 validationQuery="SELECT 1"）确保连接有效性。

连接生命周期管理:

连接（Connection）使用后必须及时关闭，建议通过 try-with-resources 自动释放（JDBC

资源均实现 AutoCloseable）：
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避免长时间持有连接（如在事务中执行耗时操作），防止连接池耗尽。

1.2.SQL 执行与参数处理

优先使用 PreparedStatement:

禁止使用 Statement 拼接 SQL（存在 SQL 注入风险），必须用 PreparedStatement 进

行参数化查询：PreparedStatement 可预编译 SQL，重复执行时性能更优。

参数绑定规范:

严格匹配参数类型（如 setInt、setString、setTimestamp），避免因类型转换导致的

隐含错误（如日期用 setString 可能引发数据库格式不兼容）。

字符串参数无需手动加单引号（PreparedStatement 自动处理），二进制数据（如 BLOB）

使用 setBinaryStream 或 setBlob。

结果集（ResultSet）处理:

结果集使用后需关闭，若通过 try-with-resources 管理，可与 PreparedStatement 一

同自动释放。

避免在循环中频繁调用 rs.getString(columnName)，可缓存列索引提升性能：

处理大结果集时，设置 fetchSize 控制一次获取的行数（如 pstmt.setFetchSize(100)），

避免内存溢出。

1.3.事务管理

显式事务控制:

禁止依赖数据库默认的 “自动提交”（conn.setAutoCommit(true)），关键业务需显

式控制事务：

事务隔离级别:

根据业务需求设置合理的隔离级别（默认由数据库决定），避免过度隔离导致性能下降：

长事务禁止:

事务中避免包含耗时操作（如 IO、网络请求），防止锁竞争和连接池阻塞。

1.4.错误处理与日志

异常处理规范:

捕获 SQLException 时，需获取详细信息（错误代码、SQL 状态、消息）：

禁止空捕获（catch (SQLException e) {}），需至少记录日志。

日志记录要求:

记录关键操作日志：连接建立 / 失败、SQL 执行异常、事务提交 / 回滚，包含时间、

SQL 语句（脱敏敏感信息）、耗时等。

避免日志中暴露敏感数据（如密码、身份证号），需进行脱敏处理。

1.5.安全性规范

防 SQL 注入:

除参数化查询外，对用户输入的特殊字符（如'、;）需额外校验，但参数化是核心手段。

禁止动态拼接表名、列名（若必须，需通过白名单校验，避免直接使用用户输入）。
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敏感信息保护:

数据库账号密码禁止硬编码，需通过配置中心（如 Nacos）、环境变量或加密配置文件

（如 Jasypt）获取。

连接字符串中避免明文传输密码，优先使用 SSL 加密连接（如 MySQL 添加

useSSL=true）。

1.6.性能与兼容性

性能优化:

批量操作使用 addBatch()和 executeBatch()减少网络交互。

避免 SELECT *，只查询必要列；大表查询需加索引和分页（LIMIT 或 ROW_NUMBER()）。

关闭不需要的自动提交和游标滚动（如 ResultSet.TYPE_FORWARD_ONLY 提升读取性能）。

跨数据库兼容：

尽量使用标准 SQL（如 ANSI SQL），避免数据库特有语法（如 MySQL 的 LIMIT、Oracle

的 ROWNUM）。

日期时间处理优先使用 java.time（JDBC 4.2 + 支持），避免数据库特定函数（如 NOW()、

SYSDATE）。

1.7.代码规范与可维护性

命名与注释：

资源变量命名清晰：conn（连接）、pstmt（预处理语句）、rs（结果集）。

SQL 语句建议定义为 static final String 常量，复杂 SQL 可单独放在配置文件中。

模块化封装：

封装通用操作（如查询、更新、批量处理）为工具类（如JdbcTemplate，或直接使用 Spring

JDBC），避免重复代码。

业务逻辑与 JDBC 操作分离，通过 DAO（Data Access Object）层统一管理数据库访问。

资源释放保障：

即使使用 try-with-resources，仍需在复杂场景下确保资源释放（如嵌套资源需分别

声明）。

避免在 finally 中关闭资源时抛出异常（可能覆盖原异常），建议单独捕获。

二、C API 开发规范

2.1.负载均衡功能配置示例

对于负载均衡功能，C API 通过操作 MYSQL 指针对象创建数据库连接、执行数据库操

作，通过 mysql_options 接口设置连接属性，为实现负载均衡功能，mysql_option 中新增

枚举值，通过新增的枚举值设置负载均衡相关的连接属性。

负载均衡连接使用步骤：

1. 调 用 mysql_options 设 置 MYSQL_LOAD_BALANCE_HOSTS 、

MYSQL_LOAD_BALANCE_STRATEGY、MYSQL_LOAD_BALANCE_BLOCKLIST_TIMEOUT 三个属性，同一

个 MYSQL 对象只需要设置一次 loadbalance 属性；
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2. 调 用 现 有 mysql_real_connect 接 口 以 阻 塞 模 式 创 建 连 接 ， 调 用 现 有

mysql_real_connect_nonblocking 以非阻塞模式创建连接；

3. 如 需 进 行 rebalance ， 调 用 mysql_real_connect 或

mysql_real_connect_nonblocking 切 换 连 接 ， 同 一 个 MYSQL 对 象 可 多 次 调 用

mysql_real_connect / mysql_real_connect_nonblocking 进行 rebalance；

4.连接使用完毕后，调用 mysql_close 关闭 MYSQL 对象。

mysql_real_connect 函数说明：

// 创建连接，创建成功返回值非空，后续使用 mysql 进行数据库操作

// 创建失败，返回值为空指针，mysql_errno 获取错误码，mysql_error 获取错误信

息

// 如果 mysql 设置了 loadbalance 相关属性，host、port、unix_socket 三个参数不

生效

MYSQL *STDCALL mysql_real_connect(MYSQL *mysql, const char *host,

const char *user, const char *passwd,

const char *db, uint port,

const char *unix_socket, ulong client_flag)

mysql_real_connect_nonblocking 函数说明：

// 创建连接完毕，返回值为 NET_ASYNC_COMPLETE，后续使用 mysql 进行数据库操作

// 连接未完毕，返回值 NET_ASYNC_NOT_READY，继续调用本接口等待连接完毕

// 失败，返回 NET_ASYNC_ERROR，mysql_errno 获取错误码，mysql_error 获取错误信

息

// 如果 mysql 设置了 loadbalance 相关属性，host、port、unix_socket 三个参数不

生效

net_async_status STDCALL mysql_real_connect_nonblocking(

MYSQL *mysql, const char *host, const char *user, const char *passwd,

const char *db, uint port, const char *unix_socket, ulong client_flag)

以阻塞模式创建负载均衡连接示例：

MYSQL *mysql_connection = mysql_init(nullptr);

// 指定 load balance 的连接串

const char * hosts = "127.0.0.1:3306,127.0.0.1:3306"

mysql_options(mysql_connection, MYSQL_LOAD_BALANCE_HOSTS,

(void *)const_cast<char *>(hosts));

// 指定 load balance 策略

mysql_load_balance_strategy load_balance_strategy = LOAD_BALANCE_RANDOM;

mysql_options(mysql_connection, MYSQL_LOAD_BALANCE_STRATEGY,

(void *)&load_balance_strategy);

// 指定 blocklist 超时时间
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unsigned long long block_timeout = 3000;

mysql_options(mysql_connection, MYSQL_LOAD_BALANCE_BLOCKLIST_TIMEOUT,

(void *)&block_timeout);

// 创建 load balance 的连接，API 内部忽略 host、port、unix_socket 三个参数

if (!mysql_real_connect(mysql_connection, nullptr/*host*/, opt_user/*user*/,

password, ""/*db*/, 0/*port*/, nullptr/*unix_socket*/,

0/*client_flag*/)) {

// 连接失败

return;

}

mysql_query(mysql_connection, “select id from t”);

// rebalance，mysql_connection 断开当前连接，重新连接到其他数据库进程

mysql_real_connect(mysql_connection, nullptr/*host*/, opt_user/*user*/,

password, ""/*db*/, 0/*port*/, nullptr/*unix_socket*/,

0/*client_flag*/);

// mysql_connection 使用完毕，关闭连接

mysql_close(mysql_connection);

以非阻塞模式创建负载均衡连接举例：

MYSQL *mysql_connection = mysql_init(nullptr);

// 指定 load balance 的连接串

const char * hosts = "127.0.0.1:3306,127.0.0.1:3306"

mysql_options(mysql_connection, MYSQL_LOAD_BALANCE_HOSTS,

(void *)const_cast<char *>(hosts));

// 指定 load balance 策略

mysql_load_balance_strategy load_balance_strategy = LOAD_BALANCE_RANDOM;

mysql_options(mysql_connection, MYSQL_LOAD_BALANCE_STRATEGY,

(void *)&load_balance_strategy);

// 创建 load balance 的连接

net_async_status mysql_conn_status = mysql_real_connect_nonblocking(

mysql_connection, nullptr/*host*/, opt_user/*user*/,

password, ""/*db*/, 0/*port*/, nullptr/*unix_socket*/,

0/*client_flag*/);

while (NET_ASYNC_NOT_READY == mysql_conn_status) {

mysql_conn_status = mysql_real_connect_nonblocking(

mysql_connection, nullptr/*host*/, opt_user/*user*/,

password, ""/*db*/, 0/*port*/, nullptr/*unix_socket*/,

0/*client_flag*/);

// mysql_connection 使用完毕，关闭连接

mysql_close(mysql_connection);

提供接口返回负载均衡连接的状态，状态信息以字符串形式返回，结果格式类似于 show
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engine innodb status，目前支持的统计指标有：

1. load balance 连接点列表

2. 创建过的 connection 总数，各个连接点创建过的 connection 数量

3. 当前不可用的连接点地址列表，即 blocklist 信息，blocklist 超时时间

获取统计信息接口：

// status 返回统计信息结果，API 内部管理内存，应用程序不需要处理内存的申请与释放

// 获取状态信息成功，返回 0；失败，返回错误码

int mysql_get_loadbalance_status(MYSQL *mysql, char **status)

注意，mysql 的生命周期大于 status 的生命周期，通过 mysql_get_loadbalance_status

获取连接状态信息后，关闭 mysql 之后，status 也随之释放，不可再使用 status。

获取连接状态信息举例：

char *status = nullptr;

if (0 == mysql_get_loadbalance_status(mysql, &status)) {

fprintf(stdout, "status:\n%s\n", status);

}

status 信息格式如下：

获取连接 ip 和端口号：

// 返回 mysql 当前连接到的数据库的 ip 和 port

// 应用程序不需要处理 ip 内存的申请与释放，port 的内存需要应用程序来管理

// 获取状态信息成功，返回 0；失败，返回错误码

int mysql_get_current_connection_host(MYSQL *mysql, char **ip, unsigned int

*port)

注意，mysql的生命周期大于ip的生命周期，通过mysql_get_current_connection_host

获取 ip 后，关闭 mysql 之后，ip 也随之释放，不可再使用 ip。

获取连接 ip 和端口号举例：

char *ip = nullptr;

unsigned int port;

if (0 == mysql_get_current_connection_host(mysql, &ip, &port)) {

fprintf(stdout, "ip: %s, port: %u\n", ip, port);

}
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注意事项：

1. 使用负载均衡方式开启连接后，事务执行过程中如果发生通信异常，应用程序会接

收 到 异 常 信 息 ， 应 用 程 序 需 要 再 次 调 用

mysql_real_connect/mysql_real_connect_nonblocking 进行 rebalance，连接到可用的数

据库节点。

2. 负载均衡连接使用完毕后，应用程序需要调用 mysql_close 关闭连接。

3. 负载均衡功能与 MYSQL_OPT_RECONNECT 重连功能不冲突，如果同时开启负载均衡和

重连功能，在 SQL 语句执行过程中发生网络异常，会对当前的连接尝试重连，如果重连失败，

可以调用 mysql_real_connect/mysql_real_connect_nonblocking 连接到其他数据库节

点。

对于国密算法加密连接通道的设置，需要通过 mysql_options 设置新的候选值，示例如

下：

if (mysql_options(&mysql, MYSQL_OPT_GM_SSL, "tassl_gm") != 0) {

fprintf(stderr, "设置国密失败%s\n", mysql_error(&mysql));

mysql_close(&mysql);

return EXIT_FAILURE;

}

除上述开发规范外，万里数据库还推荐如下开发规范指导涉及 C API 接口的应用程序开

发工作。

2.2.环境与依赖规范

版本兼容性：

明确指定目标数据库版本，确保使用的 C API 版本与数据库服务版本兼容。

编译时通过 -lmysqlclient 链接正确的库文件，避免使用过时的头文件（如 mysql.h

需对应当前库版本）。

2.3.连接管理规范

连接创建与释放：

使用 mysql_init() 初始化连接句柄，mysql_real_connect() 建立连接，确保传入正

确的主机、端口、用户名、密码及数据库名。

连接失败时，必须通过 mysql_error() 获取错误信息并记录日志，避免直接忽略错误。

连接使用完毕后，必须调用 mysql_close() 释放资源，防止句柄泄露。

连接参数设置：

显式设置字符集（如 mysql_options(mysql, MYSQL_SET_CHARSET_NAME, "utf8mb4")），

避免中文等多字节字符乱码。

按 需 设 置 连 接 超 时 （ MYSQL_OPT_CONNECT_TIMEOUT ） 、 读 写 超 时

（MYSQL_OPT_READ_TIMEOUT/MYSQL_OPT_WRITE_TIMEOUT），防止长时间阻塞。
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2.4.SQL 执行规范

SQL 语句处理：

禁 止 直 接 拼 接 用 户 输 入 到 SQL 语 句 中 （ 防 止 SQL 注 入 ） ， 必 须 使 用

mysql_real_escape_string() 对字符串参数进行转义，或优先使用 预处理语句（Prepared

Statements）。

预 处 理 语 句 推 荐 流 程 ： mysql_stmt_init() → mysql_stmt_prepare() →

mysql_stmt_bind_param() → mysql_stmt_execute() → mysql_stmt_close()，适用于重

复执行的 SQL 或含参数的场景。

执行结果检查：

执行 SQL 后（如 mysql_query() 或 mysql_stmt_execute()），必须检查返回值（0 为

成功，非 0 为失败），失败时通过 mysql_error() 或 mysql_stmt_error() 获取详细错误

信息。

对于查询语句（SELECT 等），需通过 mysql_store_result() 或 mysql_use_result()

获取结果集，处理完毕后必须调用 mysql_free_result() 释放结果集资源。

2.5.结果集处理规范

结果集遍历：

使用 mysql_fetch_row() 遍历结果行，通过 mysql_num_fields() 获取列数，

mysql_fetch_field() 获取列元信息（如字段名、类型）。

处理大结果集时，优先使用 mysql_use_result()（流式获取，内存占用低），但需注

意必须尽快处理并释放，避免阻塞服务器。

数据类型转换：

从结果集中获取数据时，需根据字段类型（如 MYSQL_TYPE_INT、MYSQL_TYPE_VARCHAR）

进行正确的类型转换，避免因类型不匹配导致数据错误。

对于 NULL 值，通过 mysql_fetch_lengths() 检查字段长度是否为 NULL 来判断，避

免直接使用空指针。

2.6.错误处理与日志规范

错误捕获：

所有可能失败的 API 调用（如连接、执行、获取结果）必须添加错误检查，不能依赖“默

认成功”。

错误信息需包含上下文（如当前执行的 SQL、参数值、调用的 API 函数名），便于问

题定位。

日志记录：

关键操作（连接成功 / 失败、SQL 执行异常、资源释放失败）必须记录日志，日志级

别区分（INFO/WARN/ERROR）。

避免在日志中明文记录密码等敏感信息。
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2.7.资源管理规范

句柄与内存管理：

连接句柄（MYSQL*）、预处理句柄（MYSQL_STMT*）、结果集（MYSQL_RES*）必须一一

对应释放，遵循 “谁创建谁释放” 原则。

避免在循环或分支中创建资源后未释放（如提前 return 导致 mysql_close() 或

mysql_free_result() 未执行）。

内存泄漏检查：

使用工具（如 valgrind）定期检测内存泄漏，重点检查结果集、预处理参数绑定的内

存是否完全释放。

2.8.性能与安全规范

性能优化：

批量操作优先使用预处理语句（减少编译次数），或通过 INSERT ... VALUES (...),

(...), ... 减少网络交互。

避免频繁创建 / 关闭连接，可考虑连接池（需自行实现或依赖第三方库）。

安全加固：

最小权限原则：数据库账号仅授予必要权限（如仅 SELECT/INSERT，避免 DROP/ALTER）。

敏感数据（如密码）在代码中避免硬编码，优先通过配置文件或环境变量读取，并确保

配置文件权限安全（如仅所有者可读写）。

三、ODBC 开发规范

万里数据库兼容 MySQL 生态 ODBC 驱动，推荐如下开发规范用于指导涉及 ODBC 接口的应

用程序开发工作。

3.1.环境与连接管理

环境句柄初始化：

通过 SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) 初始化环境句柄，

且 需 设 置 ODBC 版 本 （ 如 SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION,

(SQLPOINTER)SQL_OV_ODBC3, 0)），避免版本兼容问题。

环境句柄使用后必须通过 SQLFreeHandle(SQL_HANDLE_ENV, henv) 释放，防止资源泄

漏。

连接句柄管理：

连接句柄需基于环境句柄分配（SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc)），

连接数据库时使用 SQLConnect 或 SQLDriverConnect（支持连接字符串）。

连接成功后，建议设置连接属性（如超时 SQL_ATTR_CONNECTION_TIMEOUT、事务隔离级

别 SQL_ATTR_TXN_ISOLATION）。

断 开 连 接 需 调 用 SQLDisconnect(hdbc) ， 并 释 放 连 接 句 柄

SQLFreeHandle(SQL_HANDLE_DBC, hdbc)。
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3.2.SQL 语句执行规范

语句句柄操作：

语句句柄通过 SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt) 分配，每个语句句

柄对应一个 SQL 操作，使用后需通过 SQLFreeHandle(SQL_HANDLE_STMT, hstmt) 释放。

执行 SQL 前，建议通过 SQLPrepare 预处理语句（尤其重复执行时），提高效率；单

次执行可直接使用 SQLExecDirect。

长连接场景下，定期检测连接有效性（如执行 SELECT 1），避免使用失效连接。

参数绑定与类型安全：

使用 SQLBindParameter 绑定输入 / 输出参数，明确参数类型（如 SQL_INTEGER、

SQL_VARCHAR）、长度和精度，避免类型不匹配导致的错误。

字符串参数需指定长度（含终止符），二进制数据需指定字节数。

结果集处理：

对于查询语句（SELECT），需通过 SQLFetch 或 SQLFetchScroll 提取结果，使用

SQLBindCol 绑定结果集列到变量，明确数据类型和缓冲区大小。

处理大字段（如 TEXT、BLOB）时，需通过 SQLGetData 分块读取，避免内存溢出。

结果集使用完毕后，需调用 SQLCloseCursor(hstmt) 关闭游标。

3.3.错误处理与日志

错误信息获取：

所有 ODBC 函数调用后必须检查返回值（非 SQL_SUCCESS 和 SQL_SUCCESS_WITH_INFO

需处理）。

通过 SQLGetDiagRec 或 SQLGetDiagField 获取详细错误信息（包括 SQLSTATE、错误

代码、描述），便于调试。

日志记录：

关键操作（如连接失败、SQL 执行错误）需记录日志，包含时间、操作类型、错误详情，

便于问题追踪。

3.4.安全性规范

防止 SQL 注入：

禁止直接拼接用户输入到 SQL 语句，必须使用参数化查询（SQLBindParameter）。

示例：错误方式 SELECT * FROM users WHERE name = '${userInput}'；正确方式 SELECT

* FROM users WHERE name = ? 并绑定参数。

敏感信息保护：

数据库账号、密码避免硬编码，建议通过配置文件（加密存储）或环境变量读取，且内

存中使用后及时清零。

传输过程中（如连接字符串）建议使用加密协议（如 SSL），尤其远程数据库连接。

权限最小化：

数据库账号仅授予必要权限（如查询、插入，避免 DROP、ALTER 等高危操作），降低

风险。
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3.5.兼容性

尽量使用标准 SQL 语法，减少数据库特定扩展（如 MySQL 的 LIMIT、SQL Server 的

TOP），如需使用需通过条件编译适配。

对不同数据库的类型映射（如日期时间类型）做兼容处理，避免因类型差异导致的错误。

3.6.代码风格与可维护性

命名规范：

句柄变量建议前缀明确（如 henv 表示环境句柄，hdbc 表示连接句柄，hstmt 表示语

句句柄）。

函数和变量名使用有意义的名称（如 ConnectToDatabase、ExecuteQuery），避免缩写。

模块化设计：

将连接管理、SQL 执行、错误处理等封装为独立函数（如 ODBC_Connect、ODBC_Execute），

提高复用性。

避免在业务逻辑中直接嵌入大量 ODBC 操作代码，降低耦合。

四、Python 开发规范

万里数据库产品使用基于开源Python生态的数据库API接口进行Python应用程序开发

工作，例如 mysql-connector-python、PyMySQL 等开源方案。

万里数据库推荐如下开发规范用于指导涉及 Python 开发接口的应用程序开发工作。

4.1.环境与依赖管理

版本控制：

明确指定接口版本（如 PyMySQL>=1.0.2,<2.0），避免因版本兼容问题导致异常。

连接配置：

数据库配置（主机、端口、用户名、密码等）避免硬编码，应通过环境变量（如

os.environ.get）或配置文件（如 .env、config.yaml）加载。

敏感信息（密码、密钥）需加密存储或使用 secrets 管理工具，禁止提交到代码仓库。

4.2.连接与会话管理

连接池使用：

生产环境必须使用连接池（如 DBUtils.PooledDB），避免频繁创建 / 关闭连接导致性

能损耗。

连接池参数需根据业务压力调整（如 maxconnections 避免连接耗尽）。

使用 with 语句自动管理连接和游标，确保资源释放（即使发生异常）。

避免长期持有连接（如在循环或长任务中保持连接），用完立即释放。

4.3.SQL 操作规范

防 SQL 注入：

禁止直接拼接 SQL 字符串（如 f"SELECT * FROM users WHERE id={user_id}"），必

须使用参数化查询：
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复杂查询如需动态拼接表名 / 字段名，需先校验合法性（如白名单过滤），避免直接

传入用户输入。

字符集与编码：

连接时指定 charset='utf8mb4'（支持 emoji 和全 Unicode 字符），避免中文乱码。

数据库表和字段的字符集也需同步设置为 utf8mb4。

事务管理：

显式控制事务（默认自动提交可能导致数据不一致）：

事务中避免包含耗时操作（如网络请求），减少锁表时间。

游标与结果处理：

根据需求选择游标类型。默认游标（返回元组）适合简单查询。

字典游标（cursorclass=pymysql.cursors.DictCursor）：返回字典（键为字段名），

可读性更好。

大结果集使用 cursor.fetchmany(size) 分批获取，避免内存溢出。

4.4.错误处理与日志

异常捕获：

捕获 PyMySQL 特定异常（如 pymysql.MySQLError、pymysql.OperationalError），而

非泛泛的 Exception，便于定位问题：

日志记录：

记录关键操作（如执行的 SQL、影响行数、错误信息），但禁止日志中包含敏感数据（密

码、手机号等）。

调试环境可输出 SQL 语句，生产环境需关闭（避免泄露信息）。

4.5.性能与安全

索引与查询优化：

避免 SELECT *，只查询需要的字段。

复杂查询需先在数据库中测试执行计划（EXPLAIN），确保使用索引。

权限最小化：

数据库账号仅授予必要权限（如业务账号只给 SELECT/INSERT/UPDATE，禁止 DROP 等

高危操作）。

连接超时设置：

配置合理的超时参数（connect_timeout、read_timeout、write_timeout），避免连接

长期挂起：

4.6.测试与部署

单元测试：

使用测试数据库（而非生产库）进行测试，可借助 pytest 结合 unittest.mock 模拟

数据库操作。

部署检查
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上线前确认：

已关闭调试模式（如日志中不输出敏感信息）。

连接池参数适配生产环境压力。

所有 SQL 已通过参数化处理，无注入风险。

五、版权声明

5.1.法律声明

若接收北京万里开源软件有限公司（以下称为“万里数据库”）的此份文档，即

表示您已同意以下条款。若不同意以下条款，请停止使用本文档。

本文档所载内容受著作权法的保护，著作权为北京万里开源软件有限公司所有，

但注明引用其他方的内容除外。北京万里开源软件有限公司保留任何未在本文档中明

示授予的权利。文档中涉及万里数据库的专有信息。未经万里数据库事先书面许可，

任何单位和个人不得复制、传递、分发、使用和泄漏该文档以及该文档包含的任何图

片、表格、数据及其他信息或者其他任何商业目的的使用。

5.2.商标声明

GreatDB 和GreatDB Cluster是万里数据库的注册商标。万里数据库产品的名称和

标志是万里数据库的商标或注册商标。在本文档中提及的其他产品或公司名称可能是

其各自所有者的商标或注册商标。在未经万里数据库或第三方权利人事先书面同意的

情况下，阅读本文档并不表示以默示、不可反言或其他方式授予阅读者任何使用本文

档中出现的任何标记的权利。

5.3.服务声明

本产品符合有关环境保护和人身安全方面的设计要求，产品的存放、使用和弃置

应遵照产品手册、相关合同或相关国家法律法规的要求进行。

本文档按“现状”和“仅此状态”提供，文档中的所有陈述、信息和建议不构成任

何明示或暗示的担保。本文档中的信息随着万里数据库产品和技术的进步将不断更新，

万里数据库不再通知此类信息的更新。

https://www.greatdb.com
mailto:sales@greatdb.com
mailto:security@company.com
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